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This paper deals with L2(R)-norm and Sobolev-norm stability of polynomial
splines with multiple knots, and with regularized versions thereof. An essential
ingredient is a result on Ho� lder continuity of the shift operator operating on a
B-spline series. The stability estimates can be reformulated in terms of a Riesz basis
property for the underlying spline spaces. These can also be employed to derive a
result on stable Hermite interpolation on the real line. We point to the connection
with the problem of symmetric preconditioning of bi-infinite interpolation
matrices. � 1996 Academic Press, Inc.

1. NOTATIONS AND OUTLINE OF THE PAPER

The motivation for our present work stems from the well-known stability
result for B-spline series due to de Boor [2]. In [10] we have developed
a generalization for regularized splines with simple knots as defined by
certain tempered distributions. These stability estimates in L2(R) are of
particular importance for orthogonal decomposition of spaces which are
spanned by arbitrary shifts of one generating function, see [5]. Such
function spaces occur in a host of applications of radial basis functions to
interpolation and approximation of scattered data (Powell [13]).

The purpose of this writing is threefold. First, in Section 2 we give an
extension of the L2-stability estimate to the case where Sobolev norms are
involved. The main result (see Theorem 2.3) applies to splines with multiple
knots and is based on the Ho� lder continuity of the shift operator operating
on a B-spline series (Lemma 2.1). Second, Section 3 deals with stability
estimates for regularized splines based on tempered distributions satisfying
Assumption 1 below; the main result in this section, Theorem 3.1, extends
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our stability estimate in [10, Theorem 1] to the case of multiple knots.
Theorem 3.2 gives a reformulation of the stability result in terms of a Riesz
basis property for the corresponding space of regularized spline functions.
Third, in Section 4 we show that scattered Hermite interpolation on the
real line is regular subject to condition (3.1) being satisfied. This generalizes
a well known result on even order scattered Lagrange interpolation on the
real line, but at the same time adds the new result on stability for this
operation.

Let us begin with the notations involved. An (extended ) knot sequence of
order m # N is given by the ordered set

X=[ } } } �xi�xi+1 } } } ], xi<xi+m , (1.1)

of real numbers, subject to limi � &� xi=&� and limi � +� xi=+�,
and the multiplicity (or order) of a knot xi # X is defined as ord(xi) :=
*[ j # Z; xj=xi].

The divided differences of order k�0 with respect to the knot sequence
X are recursively given by

&i , k ( f ) :={
1
k !

f (k)(xi), if xi=xi+k ,
(1.2)

&i , k&1( f )&&i+1, k&1( f )
xi&xi+k

, if xi<xi+k .

They are used to define the sequence of B-splines of order m associated with
X in the usual way, viz.

Bi, m(t) :=m &i, m(( } &t)m&1
+ ), i # Z . (1.3)

(Here and in what follows, identities must be interpreted in the weak sense
whenever a knot of maximal order m is involved.) Alternately, based on the
fundamental solution h(x) :=xm&1

+ �(m&1)! of the differential operator
Dm: f [ f (m) we have the representation

Bi, m(t)=m (&1)m &i, m((t&} )m&1
+ )=m ! (&1)m (h V &i, m)(t), i # Z, (1.4)

which will be more appropriate to our purposes. (The convolution is in
terms of convolution of tempered distributions.) These B-splines are piece-
wise polynomial functions of local degree less than m, and with breakpoints
at the knots X. They are normalized so as to give �+�

&� Bi , m(t) dt=1, and
their support is supp Bi, m=[xi , xi+m]. They can also be considered as the
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Peano kernels for the divided differences of order m, since we have by
Peano's Theorem that

&i, m( f )=
1

m ! |
+�

&�
Bi, m(t) f (m)(t) dt (1.5)

for any f # Cm&1(supp Bi, m) with absolutely continuous (m&1)st derivative.

The Fourier transform of the B-splines can be derived as follows. We have
([7, p. 360])

h7(!)=(i!)&m+
i m&1

(m&1)!
?$(m&1).

In addition, &i, m having compact support, its Fourier transform is an entire
function which, since &i, m annihilates polynomials of degree less than m,
has an m th order zero at the origin,

&7
i, m(!)=O(!m) as ! � 0.

From this, Eq. (1.4) yields

B7
i, m(!)=m ! (&1)m h7(!) &7

i, m(!)=m ! &7
i, m(!)�(&i!)m, (1.4a)

which is an entire function of exponential type. For fixed m, it depends con-
tinuously on the knots xi , ..., xi+m (in the sense of compact convergence).

We also need two results, well known from the spline literature, where
we put

dj, k :=
xj+k&xj

k
, k # N , j # Z. (1.6)

The first one deals with the L2-stability of the B-spline series, due to
de Boor [2].

Lemma 1.1 (See [6, Chap. 5, Theorem 4.2]). For the knot sequence
(1.1) there exists a constant Dm>0 depending only on m such that

Dm &v&l2(Z)�" :
j # Z

vj - dj, m Bj, m"L2(R )

�&v&l2(Z ) (1.7)

for any sequence v=(vj) j # Z .
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In this lemma, we need not assume that v # l2(Z) if we allow &v&l2(Z) to
take the value �, and if we interpret inequalities correspondingly. How-
ever, in case v # l2(Z) we see that the map

_ : v [ _v :=_v, m := :
j # Z

vj - dj, m Bj, m (1.8)

(which is locally defined for any sequence v) represents a homeomorphism
between l2(Z) and

Sm, X :=closL2(R) S
0
m, X with S 0

m, X :=span[Bj , m ; j # Z], (1.9)

the latter considered as subspaces of L2(R); in other words, [- dj, m Bj, m ;
j # Z] is a Riesz basis of the closed subspace Sm, X .

The second result is the well-known differentiation formula for a B-spline
series (see [6, Chap. 5, Eq. (3.11)]) adapted to our notation.

Lemma 1.2. Let m>1 and dj, m&1>0, j # Z. Then for any sequence v and
the corresponding spline _v, m as in (1.7), we have

_ $v, m= :
j # Z

wj - dj, m&1 Bj, m&1

with

wj=d&1�2
j , m&1(d&1�2

j , m vj&d&1�2
j&1, mvj&1), j # Z;

i.e., we have

_ $v, m=_w, m&1 with w :=Dmv,

where Dm=(d m
j , k)j, k # Z is the lower two-banded matrix with entries

d m
j , j :=(dj , m&1dj , m)&1�2, d m

j , j&1 :=&(dj , m&1dj&1, m)&1�2, j # Z,

and d m
j , k=0 otherwise.

This differentiation formula can also be expressed in terms of the
modified divided differences

+i, k :=k! - di, k &i, k , k # N , i # Z , (1.10)

viz. with the assumptions and notations of Lemma 1.2 we have

+i , m=d&1�2
i , m (d&1�2

i+1, m&1+i+1, m&1&d&1�2
i , m&1+i , m&1),
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i.e.,

+(m) :=(+i, m) i # Z =&D*m +(m&1) if di , m&1>0, i # Z. (1.11)

2. SOBOLEV NORM STABILITY OF SPLINES

For the values dj, k as defined in (1.6), we put

qk := inf
j # Z

dj, k , k # N. (2.1)

In this section we derive a stability estimate for B-spline series in terms of
Sobolev norms

& f &H s(R) :=\ 1
2? |

R
(1+|!| 2)s | f7(!)| 2 d!+

1�2

, (2.2)

with 0�s # R arbitrary. It is clear that L2(R)=H0(R), and & f &L2( R )�
& f &H s(R ) . In particular, this shows that the left-hand estimate of (1.6)
carries over to Sobolev spaces,

Dm &v&l2(Z)�" :
j # Z

vj - dj, m Bj, m"Hs(R )

for any 0�s # R. (2.3)

Here again, either of the expressions may take the value infinity with
corresponding interpretation of the inequality.

Estimating the Sobolev norm from above is more involved. It is helpful
to use the following equivalent norm in Hs(R) (see [8, Chap. 7.9]): Let
s=k+t with k the integer part of s and 0�t<1; then for some constants
0<c1�c2<� depending only on k,

c1& f &2
H s(R)� :

k

}=0

& f (})&2
L2(R)+At ||

R2

| f (k)(x)& f (k)( y)| 2

|x&y| 1+2t dx dy

�c2 & f &2
Hs(R) (2.4)

with A0 :=0 and A&1
t :=�R |eix&1| 2�|x| 1+2t dx for 0<t<1. We note that

At �t(1&t) is bounded as t � 0 and t � 1 [8, p. 241].

Lemma 2.1. Let qm>0. Then, for any v # l2(Z) and the corresponding
spline

f :=_v := :
j # Z

vj - dj, m Bj, m ,
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we have

& f ( } +x)& f &2
L2(R)�const

|x|
qm

&v&2
l2(Z) for |x|<qm , (2.5)

where the constant depends only on m.

Proof. It is sufficient to consider the case x�0. We write q :=qm for
short. By reducing the order of all knots of X to order one, we arrive at
the set

X=5=[ } } } <!j<!j+1< } } } ].

Let Mx :=�j # Z[!j&x, !j], and let us estimate the terms in

& f ( } +x)& f &2
L2(R) 2

=|
Mx

| f ( y+x)& f ( y)|2 dy+|
R"Mx

| f ( y+x)& f ( y)| 2 dy

separately.
First let y # Ij (x) :=[!j&x, !j]. Then y, y+x # [!j&x, !j+x], and we

put

Kj :=[k # Z ; [!j&x, !j+x] & supp Bk, m{<].

From this

| f ( y+x)& f ( y)| 2�\ :
k # Kj

|vk | - dk, m |Bk, m( y+x)&Bk, m( y)|+
2

� :
k # Kj

|vk | 2 :
k # Z

dk, m |Bk, m( y+x)&Bk, m( y)| 2

�2 :
k # Kj

|vk | 2 " :
k # Z

dk, m B2
k, m"L�( R )

�
2
q

:
k # Kj

|vk | 2,

the latter inequality following from the fact that �k # Zdk, m Bk,m#1 and
hence 0�Bk, m�d&1

k, m�q&1. Integrating over Mx yields

|
Mx

| f ( y+x)& f ( y)| 2 dy� :
j # Z

|
Ij (x)

| f ( y+x)& f ( y)| 2 dy

�
2x
q

:
j # Z

:
k # Kj

|vk | 2.
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Now !j=xl j for some lj # Z with l j<lj+1 , and since 0�x<q we have
xl j&m<!j&x�!j+x<xl j+m . From this we get the final estimate

|
Mx

| f ( y+x)& f ( y)| 2 dy�
2x
q

:
j # Z

:
lj+m&1

k=lj&2m+1

|vk | 2

�
2x
q

(3m&1) &v&2
l2(Z) . (2.6)

Now let us consider the set

R"Mx=�j # Jx (!j , !j+1&x) with Jx :=[ j # Z : !j+1&!j>x].

Since f is a polynomial of degree less than m on each component of this set,
we have for j # Jx that

|
!j+1&x

!j

| f ( y+x)& f ( y)| 2 dy

=|
!j+1&x

!j } |
y+x

y
f $(z) dz}

2

dy

�x |
!j+1&x

!j
|

y+x

y
| f $(z)|2 dz dy�x |

!j+1

!j

| f $(z)| 2 |
z

z&x
dy dz

�x2 |
!j+1

!j

| f $(z)| 2 dz�cm
x2

!j+1&!j
& f &2

L�([!j , !j+1])

the latter according to an L2-version of Markov's inequality (see [6,
Chap. 4, Theorem 2.7]); here, the constant cm depends only on m. Now for
!j< y<!j+1 and !j=xl j<xl j+1=!j+1 ,

} :
k # Z

vk - dk, m Bk, m( y)}
2

= } :
lj

k=lj&m+1

vk - dk, m Bk, m( y)}
2

� :
lj

k=lj&m+1

|vk | 2 :
lj

k=lj&m+1

dk, m B2
k, m( y)

�
1
q

:
lj

k=lj&m+1

|vk | 2,

using the same estimate as above. Since !j+1&!j>x,

|
!j+1&x

!j

| f ( y+x)& f ( y)| 2 dy�cm
x
q

:
lj

k=lj&m+1

|vk | 2.
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Summing over all j # Jx yields

|
R"Mx

| f ( y+x)& f ( y)| 2 dy�cm
mx
q

&v&2
l2(Z) . (2.7)

Combining this with (2.6) proves the lemma. We also see that the constant
in (2.5) can be written as m(6+cm)&2. K

Remark. Combining this estimate with Lemma 1.1 shows that, at every
f # Sm, X , the translation operator f [ f ( } +x) is Ho� lder continuous with
Ho� lder exponent 1

2 . This result could be derived in a different way for
splines with simple knots (using the arguments of the proof of [10,
Theorem 1.b]). It is interesting that this Ho� lder continuity has been
derived without any restriction on the multiplicity of the knots, with the
sole assumption that the width of the support of the B-splines is uniformly
bounded away from zero.

Lemma 2.2. Let qm>0 and 0<t< 1
2. Then, for any v # l2(Z) and the

corresponding spline f :=_v :=�j # Z vj - dj, m Bj,m , we have

||
R2

| f (x)& f ( y)| 2

|x&y| 1+2t dx dy�const
1

t(1&2t)
&v&2

l2(Z) , (2.8)

where the constant depends only on m and qm .

Proof. This follows immediately from Lemma 1.1 and Lemma 2.1,
since, with q=qm , the integral can be estimated as

||
R2

| f (x)& f ( y)| 2

|x&y| 1+2t dx dy

=|
|x| �q

1
|x| 1+2t \|R

| f (x+y)& f ( y)| 2 dy+ dx

+|
|x|<q

1
|x| 1+2t \|R

| f (x+y)& f ( y)| 2 dy+ dx

�4 & f &2
L2(R) |

|x|�q

1
|x| 1+2t dx+const

1
q

&v&2
l2(Z) |

|x|<q

1
|x| 2t dx

�\ 4
tq2t+const

2
q2t(1&2t)+ &v&2

l2(Z) ,

with the same constant as in Lemma 2.1. K
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We are now ready to prove the main result of this section.

Theorem 2.3. Let + # [1, ..., m] with q+>0, and let 0�t< 1
2. Then, for

any v # l2(Z) and the corresponding spline f :=_v, m :=�j # Z vj - dj, m Bj, m ,
we have the stability estimates

Dm &v&l2(Z )�" :
j # Z

vj - dj, m Bj, m"H m&++t(R )

�const &v&l2(Z ) , (2.9)

where the constant can be chosen only depending on m, t, and q+ . Moreover,
if 0�t�t0< 1

2 , then the constant can be chosen depending on m, t0 , and q+ .

Proof. We only have to verify the upper estimate. Here, we employ
(2.4) with k=m&+. Since ql>0 for l=+, ..., m, we can apply Lemma 1.2
in order to see that

_ (})
v,m=_w(}), m&} with w(}) :=Dm&}+1 Dm&}+2 } } } Dmv, }=1, ..., k.

The entries of the lower two-banded matrices involved in this representa-
tion are uniformly bounded, and hence

&w(})&2
l2(Z)�cq+ &v&2

l2(Z) , }=0, ..., k,

with the constant depending only on q+ . By Lemma 1.1, this shows that

:
m&+

}=0

&_ (})
v, m&2

L2(R)�(m&++1) cq+ &v&2
l2(Z) . (2.10)

In case t>0, the remaining part in (2.4) is estimated by applying
Lemma 2.2 to g :=_w(m&+), + showing that

At | |
R2

| g(x)&g( y)| 2

|x&y| 1+2t dx dy�const
cq+

1&2t
At

t
&v&2

l2(Z) , (2.11)

with the same constant as in the lemma (depending on m&+ and q+).
Combining these two estimates with the fact that At�t is bounded as t � 0,
we arrive at the required estimate. The theorem is proved. K

Remark. The constant in (2.9) goes to infinity as t � 1
2 . This is consis-

tent with the observation that Bj, m fails to be in Hm&++1�2 if it has a knot
of order + (whence q+&1=0).
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3. RIESZ BASES OF REGULARIZED SPLINES

Throughout the rest of the paper we will often refer to the fact that X
is minimally separated of order m by which we mean that

qm := inf
j # Z

dj, m>0 . (3.1)

It has been observed by several authors (e.g. [4, 12]) that appropriate dif-
ferencing of certain functions of polynomial growth leads to bell-shaped
functions. In this section we are after such generalizations of B-splines
which can be derived from the right-hand expression in (1.4) by allowing
h to be a certain tempered distribution. Unlike earlier results in the
literature, here we allow multiple knots, to which we can extend our
stability result of [10]. As in [5] we assume the following.

Assumption 1. h is a tempered distribution, and its distributional
Fourier transform, h7, satisfies for some m # N:

(i) h7 # C(R"[0]),

(ii) h7(!){0 for ! # R"[0],

(iii) (i!)m h7 # L�(R),

(iv) 1�((i!)m h7) # L�(U0) for some neighbourhood U0 of 0.

In this case we put

G(!) :=|!| 2m |h7(!)| 2, (3.2)

and we define the matrix B=(bi, j) i, j # Z , based on the B-splines of order m,
by

bi, j :=
- di, mdj, m

2? |
+�

&�
G(!) B7

i, m (!) B7
j, m (!) d!. (3.3)

Clearly, B is hermitian, and it defines a quadratic form on l2(Z) by
putting (By, y) :=yHBy for any y # l 0

2 , the sequences of finite support.
This definition extends to all of l2(Z), since by Assumption 1(iii) and the
upper estimate in Lemma 1.1,

|(By, y) |=
1

2? |
+�

&�
G(!) |_7

y, m (!)|2 d!�1 &_y, m&2
L2(R)�1 &y&2

l2(Z) (3.4)

where 1 :=&G&L�( R )<�. It is less obvious that the quadratic form is
bounded from below as well.
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Theorem 3.1. Let qm>0. Then there is a constant #>0 such that

(By, y)�# &y&2
l2(Z) (3.5)

for any y # l2(Z).

Proof. This is a corollary of Theorem 2.3. For f :=_ :=_y, m we have

(By, y)=
1

2? |
R

G(!) |_7(!)| 2 d!,

and by Assumption 1, for any n>0 we find

#n :=ess inf
|!|�n

G(!)>0.

This yields the estimate

(By, y)�#n { 1
2? |

R
|_7(!)| 2 d!&

1
2? |

|!|>n
|_7(!)| 2 d!=

�#n {&_&2
L2(R)&

1
(1+n2)s &_&2

H s(R)=
for any s>0. Using the lower estimate in Lemma 1.1, and Theorem 2.3
with +=m and 0<t< 1

2 , we see that

(By, y)�#n {D2
m&

const
(1+n2)t= &y&2

l2(Z) ,

where the constant depends only on m, t, and qm . By choosing n
appropriately, we arrive at the statement of the theorem. K

Remark. This result generalizes our stability result in [10, Theorem 1]
to the case of multiple knots. It should be noted that our earlier result
implies Theorem 3.1 in case m>1 and qm&1>0. However, our arguments
used there (which are based on the differentiation formula for a B-spline
series) break down in the case m th order knots are considered.

Estimates (3.4), (3.5) can be reformulated as a Riesz basis property of
certain generalized splines. With the divided differences (1.2) and their
modified versions taken as in (1.10), we put

.j :=h V +j with +j :=+j, m=m ! - dj, m &j, m, j # Z . (3.6)
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These convolution products are well-defined, since h is tempered and the
support of +j is finite; their Fourier transforms, according to (1.4.a), are
given by

.7
j (!)=h7(!) +7

j (!)=(&i!)m h7(!) - dj, m B7
j, m (!), j # Z, (3.7)

and, by Assumption 1, this shows that .j # L2(R) for any j # Z. An applica-
tion of Parseval's identity thus yields the following.

Theorem 3.2. Suppose that (3.1) holds, and that Assumption 1 is
satisfied. Then we have

bij=(.i , .j) L2(R ) for i, j # Z; (3.8)

i.e., B is the Gramian of the functions defined by (3.6). In particular, by
putting

V 0
X :=span[.i ; i # Z] and VX :=closL2(R ) V 0

X , (3.9)

we have that the system [.i ; i # Z] is a Riesz basis for VX ,

# &a&2
l2(Z)�" :

j # Z

aj.j"
2

L2( R )

�1&a&2
l2(Z) , (3.10)

with # as in Theorem 3.1 and 1=&G&L�(R ) .

Due to formula (3.7), we see that the functions .j are closely related to
the B-splines Bj, m , and hence the function space VX is closely related to the
spline space Sm, X . In case h(x)=xm&1

+ �(m&1)! we have (i!)m h7(!)#1;
i.e., we have .j=(&1)m

- dj, m Bj, m , for j # Z, and VX=Sm, X . This is
consistent with formula (1.4). In other cases, in particular if h7 has good
decay properties at �, we have regularized versions of B-splines. For
further examples and more details we refer the reader to [5].

We can also give a Sobolev norm estimate. Let

f = :
j # Z

aj.j # VX .

Then for any s�0,

& f &2
H s(R)=

1
2? |

R
(1+|!| 2)s G(!) |_7

a, m(!)| 2 d!,

and Theorem 2.3 combined with (3.10) implies the following.
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Theorem 3.3. Let + # [1, ..., m] with q+>0, and let 0�t< 1
2 . Further-

more, suppose that Assumption 1 is satisfied. Then for any s�0,

- # &a&l2(Z )�" :
j # Z

aj .j"H s ( R )

�const 1s &a&l2(Z ) , (3.11)

with the same constant as in Theorem 2.3, 1s :=&(1+| } | 2)s$ G&1�2
L�(R) and

s$ :=max[0, s&(m&++t)].

Here, we again allow 1s to take the value �, but we point to the fact
that, depending on the decay properties of h7, this result provides a
stability estimate for Sobolev norms of arbitrary degree s.

4. SCATTERED HERMITE INTERPOLATION ON THE REAL LINE

Estimates (3.4) and (3.5) can be used to provide another interesting
result on interpolation on the real line. Since B acts as a bounded and
positive definite operator on the sequence space l2(Z), we can find, for any
data vector d # l2(Z), a unique vector a # l2(Z) such that B a=d. In other
words (with ei , i # Z, denoting the canonical unit vectors in l2(Z))

(Ba, ei)=�h V +i , :
j # Z

ajh V +j�=di , i # Z, (4.1)

and

# &a&l2(Z )�&d&l2( Z )�1 &a&l2(Z ) (4.2)

for the same constants 0<#�1<� as in Theorem 3.2.
Now, for any a=(aj) j # Z # l2(Z), using (3.7),

�h V +i , :
j # Z

aj h V +j�=
1

2? �h7+7
i , :

j # Z

ajh7+7
j �

=
- di, m

2? �B7
i, m , G :

j # Z

aj - dj, m B7
j,m�

=
- di, m

2?
(B7

i, m , G _7
a� ,m) ,

and from (1.5)

+i ( f )=
- di, m

2?
(B7

i,m , (f (m))7).

Comparing these two identities we find the following.
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Theorem 4.1. Suppose that (3.1) and Assumption 1 are satisfied. Then
for any data vector d # l2(Z), there is a unique spline

_=_a� , m= :
j # Z

a� j - dj,m Bj,m # Sm, X

such that

+i ( f )=di , i # Z , (4.3)

for some m th primitive f of g with (g� )7=G _7
a� , m . Furthermore, we have the

inequalities (4.2).

Specializing to the case of polynomial splines, where h(x)=xm&1
+ �

(m&1)! and G(!)#1, this gives

Corollary 4.2. Suppose that (3.1) and Assumption 1 are satisfied.
Then, for any data vector d # l2(Z) there is a unique spline _a, m=
� j # Z aj - dj, m Bj,m # Sm,X such that +i ( fa)=di , i # Z, for some m th
primitive fa of _a, m .

In this corollary, we can take any m th primitive, since the divided dif-
ference annihilates polynomials of degree less than m. Since fa is a spline of
order 2m, we can find a sequence b=(bi) i # Z such that

fa=_b, 2m= :
i # Z

bi - di, 2m Bi, 2m .

The differentiation formula for a B-spline series in Lemma 1.2 now shows
that necessarily

a=Db with D :=Dm+1Dm+2 } } } D2m

which is a bi-infinite, lower m-banded matrix D. We point to the fact that
our assumption qm>0 implies that qk>0 for k=m+1, ..., 2m as well,
showing at the same time that the entries of D are uniformly bounded.

The above results describe interpolation of the linear functionals +i ( f ),
i # Z. With more restrictive assumptions on the knot set X, however, it is
possible to obtain results for Lagrange- and Hermite-interpolation of data
vectors in l2(Z).

For this purpose, we introduce the spaces

V� 2m,X :=[ f ; f (m) # L2(R) and (f (m))7=G_7 for some _ # Sm,X] (4.4)
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and

V2m, X :=V� 2m, X & L2(R). (4.5)

In the spline case (i.e., if G#1) we obtain V2m, X=S2m, X . Note, that
V2m, X/Hm(R) holds due to the standard estimate (see [6, Chap. 2,
Theorem 5.6])

& f (k)&L2(R )�const(& f &L2(R )+& f (m)&L2(R )), 1�k�m&1, f # H m(R).

(4.6)

We first consider the simple knot case, i.e., the case where the knot
sequence has order 1. Here, we can apply (1.11) several times to see that

+(m)=(&1)m&1 D*m D*m&1 } } } D*2 +(1) (4.7)

where

+(1)=(+i, 1) i # Z=(d&1�2
i, 1 (&i+1, 0&&i, 0)) i # Z . (4.8)

Thus using the definition of Dm as in Lemma 1.2 for m=1 with dj, 0 :=1,
we put

C :=(&1)m D*m D*m&1 } } } D*1 . (4.9)

This defines a bi-infinite upper m-banded matrix. It has been used as a
preconditioner for unbounded operators in previous work of the authors
and co-workers [5, 10].

Theorem 4.1 now takes the following form.

Theorem 4.3. Assume that the knot sequence X of order 1 satisfies (3.1),
and let Assumption 1 be satisfied. Then for any bi-infinite data vector c such
that d :=C c # l2(Z), there is a unique function f =fc # V� 2m, X such that

fc (xi)=ci , i # Z.

Proof. The existence of an interpolating function f # V� 2m, X is verified by
taking the mth primitive f in Theorem 4.1 to satisfy f (xi)=ci , i=1, ..., m.
Then, by (4.3) and (4.9), f necessarily interpolates all data ci , i # Z. The
uniqueness follows from considering the homogeneous equations, i.e.,
assuming that c=d=0. Then _a� ,m=0, and hence f is a polynomial of
degree less than m. From f (xi)=0, i=1, ..., m, we find that f =0. K

It should be noted that the interpolant fc is the unique element from

Fc :={ f ;
(f (m))7

G
# L2(R), f (xi)=ci , i # Z=
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minimizing the weighted seminorm

| f |G :=\ 1
2? |

+�

&�

|( f (m))7(!)| 2

G2(!)
d!+

1�2

. (4.10)

This can be seen as in [6, Chap. 5.6]. The main point to observe here is
the closedness of the space of functions [ f (m) ; f # V� 2m, X] in the topology
of the weighted seminorm (4.10).

It is also clear that Theorem 4.3 applies to data c # l2(Z) in case the
knots of X are minimally separated of order 1, i.e., q1>0. (Note that for
the proof of Theorem 4.3 we have only assumed that qm>0.) In this case,
C is a banded matrix with uniformly bounded entries. It therefore defines
a bounded operator on l2(Z), and Theorem 4.3 is applicable for arbitrary
data sequences. This proves the existence part in the following general
interpolation theorem.

Theorem 4.4. Suppose that the knot sequence X is minimally separated
of order 1 and Assumption 1 is satisfied.

(a) For any data vector c # l2(Z), there is a unique function f # V� 2m, X

with f (xi)=ci , i # Z.

(b) If X has bounded global mesh ratio

sup
j, k # Z

xj+1&xj

xk+1&xk
<� , (4.11)

then we have that f # H m(R), and there exist constants 0<#1�#2<�
(depending only on X and m) such that

#1&c&l2(Z )�& f &Hm(R )�#2 &c&l2(Z ) . (4.12)

For the proof we only need to show that inequalities (4.12) hold. The
main tools are the Sobolev imbedding theorem and the Bramble�Hilbert
Lemma, see [3]. We state this as a separate result.

Lemma 4.5. Let X be a bi-infinite knot sequence with bounded global
mesh ratio (4.11), and let m # N. Then the following norm

& f &m, X :=(& f |X &2
l2(Z)+& f (m)&2

L2(R))
1�2, f # Hm(R), (4.13)

is equivalent to the Sobolev norm & f &m, 2 :=(� m
k=0 & f (k)&2

L2(R))
1�2 (which is

known to be equivalent to the norm & f &Hm( R ) as defined in Section 2).

Proof. Since X is minimally separated of order 1 by (4.11), we have
q1>0. Hence, by the Sobolev imbedding theorem (cf. [1, Chap. V,
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Theorem 5.4]), there is a constant #1 which only depends on q1 such that

| f (xi)|�#1& f &m, 2, Ii , f # H m(Ii),

where Ii :=(xi&q1 �2, xi+q1 �2), i # Z, are disjoint intervals. Summation
over i # Z gives

& f |X &2
l2(Z)�#2

1 & f &2
m, 2 ,

and this shows that & f &m, X�const& f &m, 2 holds for all f # Hm(R).
On the other hand, (4.11) also yields a parameter :>0 such that any

open interval of length 2: contains at least m points from X. For fixed
x # R, we let Rx :=(x&:, x+:) and choose m points xki # Rx & X,
1�i�m. By the imbedding theorem, the point evaluation functionals
li ( f ) :=f (xki) are bounded by the Sobolev norm on Rx ,

|li ( f )|�#2 & f &m, 2, Rx ,

where #2 depends only on :. Furthermore, since q1>0, the corresponding
Lagrange polynomials pi , 1�i�m, of degree less than m satisfy

li ( pj)=$ij and :
m

i=1

| pi (x)| 2�#3 ,

where #3 only depends on :, q1 , and m. Hence, the linear functional

Fx : f [ f (x)& :
m

i=1

li ( f ) pi (x), f # H m(Rx),

is again bounded. It obviously annihilates all polynomials of degree less
than m. As a consequence of the Bramble�Hilbert Lemma [3, Theorem 2],
we obtain that

|Fx( f )|�#4 & f (m)&L2(Rx) , f # H m(Rx),

with #4 only depending on :, q1 , and m.
From this inequality we immediately find

| f (x)| 2=|Fx( f )+ :
m

i=1

l i ( f ) pi (x)| 2�2 |Fx( f )|2+2#3 :
m

i=1

|li ( f )|2

�2#2
4 |

Rx

| f (m)(t)|2 dt+2#3 :
xk # Rx & X

| f (xk)| 2

�const {|Rx

| f (m)(t)| 2 dt+|
Rx

| f (t)| 2 d_X (t)= (4.14)
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with _X=�k # Z $xk . Upon integration we obtain

|
R

| f (x)| 2 dx�const {|R
| f (m)(t)| 2 |

t+:

t&:
dx dt+|

R
| f (t)| 2 |

t+:

t&:
dx d_X (t)=

=2: const {|R
| f (m)(t)| 2 dt+ :

k # Z

| f (xk)| 2= .

Thus we have shown that & f &L2(R )�const& f &m,X holds for all f # Hm(R),
with the constant depending only on m, q1 , and the mesh ratio (4.11).
Bounding the intermediate derivatives of f by & f &m, X is done using the
standard estimate (4.6). Therefore, we have proved the equivalence of the
norm (4.13) and the Sobolev norm. K

We have the feeling that the result of Lemma 4.5 is not original.
However, we could not find it in the standard literature on Sobolev spaces,
and for this reason we wanted to include a proof.

Proof of Theorem 4.4. Let f be the unique interpolant from V� 2m,X to
given data c # l2(Z). Then, with the same notations as in Theorem 4.1 and
d=Cc, we have

& f (m)&2
L2(R)=

1
2? |

R
G 2(!) |_7

a� , m(!)| 2 d!�1 2 &a&2
l2(Z)�

1 2

#2 &Cc&2
l2(Z) ,

the latter according to (4.2). Since C is a bounded operator by (4.11), we
obtain for the equivalent norm (4.13)

& f &2
m, X�\1+\1 &C&

# +
2

+ &c&2
l2(Z) ,

which gives the right-hand side of (4.12). In particular, f is thus shown to
be an element of Hm(R). But then, the left-hand side of (4.12) is just
another consequence of Lemma 4.5. K

It is in order to add two remarks to Theorem 4.4. The stability result
holds true for the modified norm

& f &G :=(& f |X&2
l2(Z)+| f | 2

G)1�2

instead of the Sobolev norm, with | } |G as in (4.10) and different constants
#1 , #2 in (4.12). A related result for multivariate gridded data was already
elaborated in [9, Section 4], where the close relation of cardinal interpola-
tion with L2-projection was shown. There is also some connection to the
work by Madych and Nelson [11]; but they follow a different approach to
the interpolation problem.
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Specializing to the case of spline functions we have shown the following
result.

Corollary 4.6. Suppose that the assumptions of Theorem 4.4 are
satisfied, and let X have bounded global mesh ratio. Then, for any data vector
c # l2(Z), there is a unique spline function _b, 2m=�j # Z bj - dj, 2m Bj, 2m #
S2m, X with

_b, 2m(xi)=ci , i # Z,

and there exist constants 0<#1�#2<� (depending only on m and X) such
that

#1 &c&l2(Z )�&_b, 2m&L2(R )�#2 &c&l2(Z ) . (4.15)

In this result, we can take the L2 -norm instead of the Sobolev norm in
(4.15), since both norms are equivalent on the spline space S2m, X by
Lemma 1.2. We thus have shown the stability of the spline interpolation
operator for splines of even order with a bi-infinite knot sequence. Note
that in contrast to the proof in [6, Chap. 13, Theorem 5.2] we have not
appealed to Demko's result.

In the multiple knot case, we can argue as follows. Let X be an extended
knot sequence of order m, and let 5=[ } } } <!k<!k+1< } } } ] be the sub-
sequence of distinct points from X. Let c be a bi-infinite data vector. Then
f |X=c means that f interpolates the data c in the following way. If xi is a
simple knot from X, then f (xi)=ci as before. However, if ord(xi)>1, for
example xi=xj with

xj&1<xj=xj+1= } } } =xj+p<xj+p+1 ,

then the interpolation conditions at xi become

&j, k( f )=
1
k !

f (k)(xj)=cj+k , k=0, ..., p.

Given an extended knot sequence of order m, we thus see that at most
(m&1)st derivatives will be involved.

It is now important to notify that by putting

&( f ) :=f |X

we can write

+(m)( f )=C&( f ) (4.16)
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with a banded matrix C which is a modification of the matrix (4.9). This
matrix has uniformly bounded entries provided that the sequence 5 is mini-
mally separated of order 1. This can easily be seen from the recursive
definition (1.2), since division by differences of distinct knots is not critical
in this case. Depending on the requirements posed on the knot set 5 we
find the following results.

Theorem 4.7. Let X be an extended knot sequence of order m such that
(3.1) holds, and suppose that Assumption 1 is satisfied.

(a) For any data vector c # l2(Z) with d :=Cc # l2(Z), there is a
unique function f # V� 2m, X with f |X=c.

(b) If the reduced knot set 5 is minimally separated of order 1, then
(a) holds for any data vector c # l2(Z).

(c) If the reduced knot set 5 has bounded global mesh ratio

sup
j, k # Z

!j+1&!j

!k+1&!k
<�,

then f # Hm(R), and there exist constants 0<#1�#2<� (depending only on
X and m) such that

#1 &c&l2(Z )�& f &H m(R )�#2 &c&l2(Z ) . (4.17)

Proof. The proof is very much the same as before. The only difference
in part (a) is to choose m knots xj , ..., xj+m&1 with xj&1<xj in order to
obtain a regular Hermite interpolation problem. Part (b) follows from (a)
and the boundedness of the operator C. For part (c) we have to give a few
more details. The essential part is to show that an analogue of Lemma 4.5
holds true for the modified norm (4.13), where the correct interpretation of
f |X is used. The Sobolev imbedding theorem can be applied in order to find
a uniform bound for all functionals in &( f ), since only derivatives of order
less than m are involved. This gives the first part of the proof of the lemma.
The second part is proved in the same way as before by choosing m points
in Rx & 5 and using Lagrange interpolation at these points. The only
change is in (4.14) and the subsequent formula, where the expression
�xk # Rx & X | f (xk)|2 is substituted by the norm of the vector

& f | (Rx & X) &2
l2

with an appropriate interpretation of multiple knots by function and
derivative values. No other changes are needed for the proof of part (c). K
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In order to explain this result in more detail, we consider the special
case of

ord(xi)=2 , i # Z,

i.e., the case of Hermite interpolation with double knots. In this case,

X=[ } } } <x2i=x2i+1<x2i+2=x2i+3 } } } ]

and we let

!i :=x2i , i # Z .

The data vector &( f ) now takes the form

&( f )=(. . ., f (!i), f $(!i), f (!i+1), f $(!i+1), ...)

where the index 0 corresponds to f (!0), the index 1 to f $(!0), etc. The
second divided differences +i, 2 , i # Z, are given by the vector

+(2)( f )=E&( f ), where E=(eij) i, j # Z ,

and the entries of E are obtained from

+2i, 2( f )=&
- 2

(!i+1&!i)
3�2 ( f (!i)+(!i+1&!i) f $(!i)&f (!i+1)),

+2i+1, 2( f )=+
- 2

(!i+1&!i)
3�2 ( f (!i)&f (!i+1)+(!i+1&!i) f $(!i+1)), i # Z.

Due to the Hermite data, E is no longer triangular, but still 2-banded.
Each row has 3 non-zero entries. If f (x0) and f $(x0) are specified (as in the
proof of Theorem 4.3), then f |X can be recursively determined from the
values +(2)( f ). Higher order differences are obtained as in (4.7),

+(m)( f )=(&1)m&2 D*mD*m&1 } } } D*3 E&( f )=: C&( f ).

It is clear that the entries of E are uniformly bounded, provided that the
knots [!i ; i # Z] are minimally separated of order 1. The same is true
for the matrix C in case m�3. Part (c) of Theorem 4.7 implies that the
Hermite spline interpolation problem with data c # l2(Z) is always
solvable, and that the stability estimate

#1 &c&l2(Z )�&_b, 2m&L2(R )�#2 &c&l2(Z )

holds true for the unique Hermite spline interpolant _b, 2m # S2m,X , provided
that the set 5 has bounded global mesh ratio.
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